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Abstract

Almost all NMR imaging and localized spectroscopic methods fundamentally rely on the use of magnetic field gradients. It

follows that precise information on gradient waveform shape and rise-times is often most useful in experimental MRI. We present a

very simple and robust method for measuring the time evolution of a magnetic field gradient. The method is based on the analysis of

the NMR signal in the time domain, and requires no specialized field measurement probes for its implementation. The technique

makes use of the principal that for small flip angles the excitation profile is a good approximation to the Fourier transform of the

radio frequency pulse shape. Creation of the NMR signal can be considered as an inverse Fourier transform and thus variation of

the gradient strength during the excitation pulse influences the shape of the NMR signal. Although originally designed for mea-

surement of the rise time only, we have now extended the technique to measure the exact time course of the gradient. The theory is

confirmed by experimental results for gradient waveform field measurements in a high-field vertical bore system.
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1. Introduction

Time-varying magnetic field gradients are the pri-

mary method used for spatial encoding in magnetic
resonance imaging (MRI) experiments. The most com-

mon waveforms use a linear ramp to change gradient

amplitude. In practice, the gradient field waveform ac-

tually generated is not the ideal shape as described

digitally, as it is affected by imperfect electronics and

power supplies as well as eddy currents induced in

conducting material surrounding the gradient coils.

Measuring the current flowing through the gradient
coils, as a means of monitoring the field may not always

be sufficiently accurate as eddy current effects are not

taken into account. To get more precise information on

time varying gradients the direct measurement of the

magnetic field within the magnet bore is preferred.

A number of different techniques have been proposed

for gradient waveform measurement. One approach is

based upon the measurement of the magnetic field by a

pick-up coil [1–3]. The common drawbacks of this

technique are: the need for a dedicated, calibrated non-

standard electronics and probe; field probes are con-
structed from electrically conductive materials that may

disturb the measured magnetic field; the need for dedi-

cated probes for different sizes of gradient coils and

different slew rates; the difficulty in performing accurate

measurements in microimaging scanners due to the very

limited space.

An alternative solution is to perform the measure-

ments using the NMR signal, namely to observe how the
NMR signal is affected by the magnetic field gradient

waveform. For example the eddy current field has been

studied by measuring the offset frequency of the signal

obtained from a small spherical sample [4]. The free

induction decays (FIDs) were recorded after various

time delays following a gradient pulse and at different

physical locations inside the magnet and data were fitted

to a sum of decaying exponentials to characterize the
eddy currents. Another approach [5] is to measure out-

of-phase components of the FIDs detected from small
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sample with short relaxation times T1, T2. The sequence
is easy to implement and is useful for interactive setting

of preemphasis compensation network to minimize a

shift in the main magnetic field.

Terpstra et al. [6] have demonstrated a method for

the measurement of the eddy current effects due to

gradient pulses. It is based upon stimulated echoes and

projection measurements. Our method differs because it

is designed to measure the gradient waveform itself,
rather than solely the subsequent eddy current effects.

Balcom at al. [7] proposed a different method for

measurement of the gradient waveform. Hard RF pulses

were applied at different time points during the rise (or

fall) of the gradients and the FIDs were recorded. The

gradient time course was then calculated from the width

of the phantom profiles, which is dependent on the in-

stantaneous gradient value during excitation of the
sample. The precision of this multi-shot method is af-

fected by the uncertainty in the estimation of the width

of the measured profiles.

We present another technique for the measurement of

the gradient ramp, which relies on the NMR phenom-

enon only, and does not require specialized field probes

and thus can be used in a magnet of any size. The

method is very accurate as no extraneous conducting

material is placed inside the gradient coils. The method
is based on applying rectangular radio frequency (RF)

pulse during the gradient rise as shown in Fig. 1. Pre-

viously we have presented its first use for the estimation

of gradient stabilization time [8]. Additionally we have

also shown [9] that this principle can yield gradient time

shapes as well. In this paper we present a detailed

analysis, theoretical model, and simple experimental

measurements of gradient ramp waveforms. The method
is in principle a ‘‘one shot’’ technique, however multiple

accumulations of the signal increase measurement sen-

sitivity as signal-to-noise (SNR) is improved.

2. Methods

2.1. Theoretical considerations

The proposed gradient waveform measurement can

be performed either with a spin-echo or gradient-echo

method. The potential problem with gradient echo is its
sensitivity to the magnetic field inhomogeneities what

can affect the detected signal and thus corrupt the re-

constructed gradient waveform. For that reason the

spin-echo version of the experimental setup is preferred

and will be considered in the following theoretical

analysis. For simplicity the relaxation effects on forma-

tion of NMR signal are ignored.

The analysis is based on the fact that for a small flip
angle, the excitation profile for an RF pulse in the

presence of a constant gradient is very similar to the

Fourier transform of its envelope with a linear phase

shift, see Fig. 1. Consider a sample of infinite extent

along the z-axis, with a uniform cross-section. We define

the transverse magnetization in the rotating frame as

Mxy ¼ Mx þ iMy with a spatially varying precession fre-

quency given as x ¼ czG. Let B1ðtÞ be the amplitude of
the applied RF field (magnetic induction (T)) along the

axis x of the rotating frame. The transverse magnetiza-

tion of the spin system, which is initially along the ‘‘z’’

axis ð0; 0;M0Þ, after the RF pulse can be expressed as:

MxyðxÞ ¼ K
Z T

0

B1ðtÞe�jcz
R T

t
GðsÞ ds

dt; ð1Þ

where K ¼ jcM0 and T is length of the RF pulse [10,11].

For a rectangular RF pulse PT ðtÞ defined as:

PT ðtÞ ¼
P ; 06 t6 T ;
0; otherwise

�
and constant gradient G, Eq. (1) can be rewritten as:

MxyðxÞ ¼ Ke�jxT

Z T

0

Pejxt dt ¼ Ke�jxTF�1fPT ðtÞg

¼ Ke�jxTMp
xyðxÞ; ð2Þ

where F�1 represents the inverse Fourier transform and
Mp

xyðxÞ is the Fourier transformation of the pulse PT ðtÞ,

Fig. 1. (a) The spin echo pulse sequence for measurement of the rise

time of the gradients; (b) excitation with a constant gradient where the

switch time (Ts) is longer than the gradient rise time (Tg); (c) gradient
program for the case of excitation during a changing gradient: Ts < Tg
(the shaded areas represent trim and spoiler gradients); (d) a typical

�reference� echo signal (constant gradient); (e) a typical �compressed�
echo (variable gradient), where T 0

c corresponds to excitation which

occurs during constant part of the gradient.
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i.e., the excitation profile without phase shift. Note that
this is true only for small flip angle when c 	 P 	 T 
 1

and linear response of the spin system can be assumed.

Next consider what happens if we apply a p pulse pro-

ducing a rotation about the x-axis. The p pulse leavesMx

unchanged, and changes My into �My , i.e., Mxy ¼ Mx�
iMy and for transverse magnetization after p pulse can

be written as:

MxyðxÞ ¼ K�ejxT ðMp
xyðxÞÞ�; ð3Þ

where ‘‘*’’ denotes complex conjugate. The NMR signal

is sampled during constant readout gradient G0, which

has the same sign but in general a different magnitude

than the excitation gradient, i.e., G0 ¼ b 	 G. Thus the

frequency scale is rescaled into x0 ¼ b 	 x and transverse
magnetization into: Mxyðx0=bÞ. Then the NMR signal

can be written as:

sðtÞ ¼ L
Z 1

�1
Mxy

x0

b

� �� ��

e�jx0t dx0

¼ LK�
Z 1

�1
Mp

xy

x0

b

� �� ��

ejðT=bÞx
0
e�jx0t dx0; ð4Þ

where L is a complex constant which includes properties
of the signal detection channel such as a sensitivity of

the receiver coil, amplifier, etc. This integral (Eq. (4)) for

the detected signal can be rewritten as:

sðtÞ ¼ LK�jbj
Z 1

�1
ðMp

xyðxÞÞ�e�jðbt�T Þx dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FfðMp

xy ðxÞÞ�g

; ð5Þ

where F represents the Fourier transform and

x ¼ x0=b. Eq. (2) represents the Fourier relationship

between the RF pulse and its excitation profile, whereas

Eq. (5) represent the Fourier relationship between the

excitation profile and the detected signal. The detected

signal can further be written as:

sðtÞ ¼ LK�jbj 	 P �
T ðT � b 	 tÞ: ð6Þ

From Eq. (6) it can be seen that detected signal sðtÞ has
a similar shape to the RF pulse PT ðtÞ but is rescaled in
amplitude and length and the time scale is also re-

versed, i.e., the beginning of the detected signal corre-

sponds to the end of the RF pulse and vice versa. The

time reversal arises because the echo is generated from

the complex conjugate excitation profile ðMp
xyðxÞÞ� [12].

For example, if we repeat an experiment and at each

repetition the excitation gradient is increased the

observed NMR signal becomes lower in amplitude
(b is decreasing) and the width of the signal becomes

wider.

2.2. Excitation under a time-varying gradient

So far, we have considered excitation and signal

acquisition under constant gradients. Now we will

examine what happens when excitation is performed
during a varying gradient. Suppose, that for small en-

ough time interval Dt ¼ T=M the gradient pulse GðtÞ can
be approximated by the step function (Fig. 2):

GðtÞ ¼

a0Gref ; 06 t < Dt;
a1Gref ; Dt6 t < 2 	 Dt;
..
.

akGref ; k 	 Dt6 t < ðk þ 1Þ 	 Dt;
..
.

aM�1Gref ðM � 1Þ 	 Dt6 t < Dt;

8>>>>>>>><
>>>>>>>>:

ð7Þ

where M is the total number of the time intervals, and

Gref is a constant gradient reference value. Using this

gradient approximation the integrals in Eq. (2) can be
split into the Dt time intervals during which the gradient

is assumed to have a constant value. Then at the end of

the RF pulse PT ðtÞ the transverse magnetization MxyðxÞ
can be expressed as:

Fig. 2. Illustration of the reconstruction of the gradient shape from the

time-reversed compressed echo: (a) the reference and compressed echo

signals. The gradient rise time can be calculated from T 0
p and T 0

c ; (b) the

compressed echo between points A and B is divided into intervals Dw0
i,

each of equal area Dw0
ref ; (c) the intervals (Dt

0
i) are used to calculate the

gradient amplitude coefficients ai.
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MxyðxÞ ¼
XM�1

k¼0
K
Z ðkþ1ÞDt

kDt
P exp

("
� jcz akGref

Z ðkþ1ÞDt

t
ds

 

þ
XM�1

l¼kþ1
alGref

Z ðlþ1ÞDt

lDt
ds

� �!)
dt

#
ð8Þ

thus calculating integrals in the exponent:

MxyðxÞ ¼
XM�1

k¼0
K
Z ðkþ1ÞDt

kDt
P exp

("
� jcz akGrefðk

 
þ 1ÞDt

� akGref t þ
XM�1

l¼kþ1
alGrefDt

!)
dt

#
: ð9Þ

Substitution of the variable t in the exponent by t þ kDt
and a corresponding change of integration limits

gives:

MxyðxÞ ¼
XM�1

k¼0
K
Z Dt

0

P exp

("
� jcz akGrefðk

 
þ 1Þ

� Dt:� akGrefðt þ kDtÞ þ
XM�1

l¼kþ1
alGrefDt

!)
dt

#

¼
XM�1

k¼0
K exp

("
� jcz

XM�1

l¼k

alGrefDt

)
Z Dt

0

P exp jczakGref tf gdt
#
: ð10Þ

Introducing a rectangular RF pulse PDtðtÞ defined as:

PDtðtÞ ¼
P ; 06 t6Dt;
0; otherwise

�
and using xref ¼ czGref , the transverse magnetization (in

the presence of a variable gradient) at the end of the

rectangular RF pulse PT ðtÞ can be written as:

MxyðxÞ ¼
XM�1

k¼0
K

"
exp � j

XM�1

l¼k

alxrefDt

( )

�
Z 1

�1
PDtðtÞejakxref t dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mp
xy ðakxref Þ¼F�1fPDtðtÞg

ð11Þ

Eq. (11) shows that final transverse magnetization pro-

duced by a rectangular pulse PT ðtÞ and variable gradient

GðtÞ can be expressed as the sum of the rescaled partial

excitation profiles mp
xyðakxrefÞ of RF pulses PDtðtÞ. Each

of these profiles is multiplied by a complex constant
expf�j

PM�1
l¼k alxrefDtg, which holds information about

the remaining gradient waveform after excitation of this

profile and is unique for each profile. These profiles are

now rescaled just in the frequency domain, while the

magnitude remains unchanged. Now, we have to again

consider the effect of the refocusing p pulse, which rotate
transverse magnetization around x-axis. The transverse

magnetization after the p pulse can be written as:

MxyðxÞ ¼
XM�1

k¼0
K� exp j

XM�1

l¼k

alxrefDt

( )
ðmp

xyðakxrefÞÞ�
" #

ð12Þ
which indicates that the transverse magnetization is now

equal to the complex conjugate of the excitation profile.

2.3. Acquisition gradient

Let us further apply an acquisition gradient G0, i.e.,
G0 ¼ bGref and x0 ¼ b 	 xref . Then from Eqs. (4) and
(12), the acquired signal can be expressed as:

sðtÞ ¼ L
Z 1

�1

XM�1

k¼0
K� exp j

XM�1

l¼k

al
b

x0Dt

( )
mp

xy

ak
b

x0
� �� ��" #" #

e�jx0 t dx0:

ð13Þ
Applying the linear property (addition theorem) of the

Fourier transform [12], terms in the sum can be trans-

formed separately and the results combined, i.e. inte-

gration and summation in Eq. (13) can be exchanged.

Thus the signal corresponding to the kth member is
given by:

skðtÞ¼LK�
Z 1

�1
mp

xy

ak
b

x0
� �� ��

�exp j
XM�1

l¼k

al
b

x0Dt

( )
e�jx0 tdx0 ¼ LK� b

ak

����
����

�
Z 1

�1
ðmp

xyðxÞÞ� exp � j
1

ak
b 	 t�

XM�1

l¼k

alDt

 !
x

( )
dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ffðmp
xyðxÞÞ�g

;

ð14Þ
where x ¼ ðak=bÞx0. Applying a Fourier transformation
to the partial excitation profiles ðmp

xyðxÞÞ� the relation-
ships between kth excitation pulse PDtðtÞ and corre-

sponding signal response can be found:

skðtÞ ¼ LK� b
ak

����
���� 	 P �

Dt

1

ak

XM�1

l¼k

alDt

  
� b 	 t

!!
ð15Þ

or for the whole pulse PT ðtÞ the sampled signal is as
follows:

sðtÞ ¼ LK�
XM�1

k¼0

b
ak

����
���� 	 P �

Dt

1

ak

XM�1

l¼k

alDt

  
� b 	 t

!!
: ð16Þ

From Eq. (16) the following conclusions concerning the

detected signal can be drawn:

1. The negative sign of the time variable means that the
time axis of the detected signal is reversed, when com-

pared to the time axis of the excitation pulse. In other

words, what happens at the beginning of excitation is

reflected at the end of the signal and vice versa.

#
:
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2. The detected signal can be represented by a sum of
rectangular pulses. Each of these pulses has a rescaled

magnitude and duration, which depend upon the ra-

tio of the readout and corresponding excitation gradi-

ent (instantaneous gradient value akGref ).

3. Each pulse is shifted from the beginning of the signal

by the sum of the lengths of all the previous pulses.

In the next section we will use these relationships

between excitation profile, gradient strength, and de-

tected signal to design the measurement pulse sequence

and an algorithm for gradient shape calculation.

2.4. Pulse sequence

The pulse sequence proposed for gradient rise time

measurement is shown in Figs. 1a–c. The spin-echo ex-

periment was chosen, because it is less sensitive to B0

inhomogeneity and therefore T �
2 decay when compared

to the gradient-echo. The spin excitation is performed
by a rectangular, low flip angle RF pulse PT ðtÞ in the

presence of the gradient under examination. The se-

quence is implemented to allow adjustment of the gra-

dient switch time Ts, i.e., the time delay between gradient
onsets and beginning of the PT ðtÞ pulse. The gradients

placed around the refocusing 180� RF pulse function as

trim and spoiler gradients. The echo signal is sampled

with constant readout gradient pulse. When the length
of the excitation RF pulse PT ðtÞ is set longer than the

gradient rise time Tg, i.e., T > Tg, then the value of the Ts
parameter determines the behavior of the spin excitation

and which of two types of echoes can be observed.

Reference echo. When the delay between the begin-

ning of the gradient pulse and the beginning of the RF

pulse (Ts) is much longer than the gradient rise time, i.e.,
Ts > Tg, the gradient has enough time to stabilize and
excitation is performed with constant gradient (Figs. 1a

and b). The detected NMR signal has a rectangular

shape similar to the excitation RF pulse (echo s1 in Fig.

1d) but with a rescaled length T 0
p given by the ratio of the

readout and excitation gradient amplitudes, due to Eq.

(6). This signal will be called the reference echo and can

be used as the reference data.

Compressed echo.When Ts < Tg, some part of the spin
excitation is performed during the gradient ramp (Figs.

1a–c). In this case a change of the signal envelope can be

observed and the typical echo shape for such case is shown

in Fig. 1e. The part of the signal that corresponds to the

excitation during the gradient ramp is compressed in time

and increased in magnitude due to Eq. (16). We refer to

this as the compressed echo and the switch time as Ts2 .

2.5. Calculation of gradient rise time

The simplest task is to determine the gradient rise

time, i.e., the time needed for the gradient to reach the

required amplitude. This time can be calculated by
comparing the reference and compressed echoes, Fig.

2a. The reference echo allows determination of the sta-

ble part of the compressed echo. The gradient rise time

Tg is given by:

Tg ¼ b 	 T 0
p

�
� T 0

c

�
þ Ts2 ð17Þ

where T 0
p is the length of the reference echo, T 0

c is the

constant part of the compressed echo, b is rescaling

factor from Eq. (6) and Ts2 is the gradient switch time.

2.6. Gradient shape reconstruction algorithm

The compressed echo can be used not only for gra-

dient rise time calculation but also for reconstruction of

the full gradient shape. This could be particularly useful

when the gradient shape is more complicated than a

simple ramp and the knowledge of the exact gradient

shape is desirable. The principle of gradient shape re-

construction is based on Eq. (16), namely that the

compressed echo contains information about the gra-
dient magnitude time course and can be represented by a

sum of rectangular pulses. Thus calculation of the co-

efficients ak from the compressed echo allows gradient

shape to be determined. This is illustrated in Figs. 2b

and c and includes the following steps (Fig. 2):

1. Calculate the modulus of the detected signal.

2. Reversal of the time axis of the acquired compressed

echo s2ð�t0Þ—the signal is flipped in the left-right di-
rection (Fig. 2b).

3. Selection of the bounds ðA;BÞ of the compressed echo
s2ðt0Þ on which the calculation will be performed

(Fig. 2b).

4. Determination of the reference value s2ðt0refÞ from the

part of the signalwhere the gradient is assumed tobe al-

ready constant and thus calculate the reference area as:

Dw0
ref ¼ s2ðt0refÞ 	 Dt0ref ; ð18Þ

where Dt0ref is the length of the reference interval.
5. Division of the interval between points A and B into

intervals Dt0i in such way that area under the signal

s2ðt0Þ on the each of these intervals is equal to the ref-

erence area Dw0
ref .

6. Calculation of the coefficient ai and time interval Dt
as follows:

Dt ¼ bDt0ref ; ð19Þ

ai ¼ b
Dt0i
Dt0ref

: ð20Þ

7. Reconstruction of the gradient shape from the calcu-

lated coefficients ai and Dt using Eq. (7).

Besides the electronic random noise, there are some
experimental factors that limit the accuracy of the echo

shape calculations. The receiver dynamic range and the

bandwidth of the receiver low-pass filter ultimately limit

V. Jell�uu�ss et al. / Journal of Magnetic Resonance 162 (2003) 189–197 193



the height and sharpness of the peak at the end of the
echo. Additionally at low gradient values (i.e., at the

beginning the ramp) the RF pulse excites a larger extent

of the sample, and thus sample edge effects (i.e., shape

and size) can affect the received signal.

Due to these effects the total area of the compressed

echo cannot be used for gradient shape calculation.

Both ends of the echo, which are mostly affected by

these effects, have to be excluded from calculation, and
reconstruction can be done only on the interval ðA;BÞ.
This, together with the use of a finite switch time Ts
between measured gradient onset and the RF pulse,set

limits on the reconstruction of the very beginning of the

gradient ramp. Consequently the very start of the gra-

dient lobe can be only be estimated, e.g., by extrapola-

tion. Note that whereas the reconstructed gradient

waveform time scale is accurate, being the same as the
time scale of the measured echo, the gradient magnitude

is in arbitrary units since it depends upon the arbitrarily

scaled echo signal amplitude.

3. Experimental methods

All experiments were carried out using 11.7 T, 7 cm
vertical bore magnet (Magnex UK) equipped with self-

shielded gradient system SGRAD123/72/S and Techron

gradient amplifiers 7300 Series. The spectrometer was an

Avance DRX Bruker console (Bruker, Kalsruhre, Ger-

many). A 2 cm i.d. Helmholtz coil was employed in all

experiments. Two types of phantoms were used: a plastic

tube (inner diameter 1.4 cm and length 5 cm) and a

spherical glass vessel (inner diameter 2.2 cm). Both were
filled with CuSO4 doped water with T1 ¼ 370ms and

T2 ¼ 240ms. The tube was oriented along the measured

gradient field direction. The sphere phantom made ex-

periments more convenient and faster because orienta-

tion of the phantom did not have to be changed for

different gradients. A rectangular RF pulse with flip angle

about 11� and duration 800 ls was employed for spin

excitation. The length of the 180� refocusing hard pulse
was 100 ls. All experiments were done with the same

parameters: echo time (TE) 3.36ms, time repetition (TR)

2 s, and 32 averages. The length of the data acquisition

was 1.024ms during which 512 complex sample points

were acquired. Six dummy scans were used before each

data acquisition to reach steady state. The total experi-

ment time for each data acquisition was approximately

76 s. In all experiments the gradient under examination
was ramped from zero to 80mT/m in 175 ls.

4. Results and discussion

Fig. 3 shows the reference and compressed echoes

from the Z gradient measurements using the tube

phantom. The length of the reference echo ðT 0
pÞ is 0.8ms

and the length of the stable part of the compressed echo

ðT 0
cÞ was estimated to be about 0.620ms. The gradient

switch time Ts2 was 0.01ms and the readout/excitation

gradient ratio (b) was unity. Using Eq. (17) the gradient

rise time ðTgÞ was estimated to be 0.190ms.

Time dependent gradient behavior was examined

more closely by using the gradient shape reconstruction

algorithm. Setting the bounds ðA;BÞ and choosing the

reference values from the constant echo part was done

manually (point 3 and 4 of the algorithm). The length of
the reference interval Dt0ref was equal to the sampling

interval, i.e., 2 ls. When the echo was divided into parts

with equals areas (point 5 of the algorithm) a cubic

spline interpolation [13] was used to calculate signal

values between samples. The results of gradient calcu-

lations are shown in Fig. 4. together with the measured

gradient amplifier currents for each coil. The calculated

gradient ramps are shown beginning at a point about
30% up the ramp. The missing points were extrapolated

by a linear fit. The beginning of the gradient pulse was

then estimated as the crossing point of this line with the

time axis.

Comparing the reconstructed gradient ramps from

the tube and sphere phantoms, it can be seen that the

data from sphere exhibit ripples distortions. This is

particularly visible for the X and Y gradients. The most
likely cause was imperfect centering of the sphere

phantom in the X and Y-axes. Along the Z-axis posi-

tioning of the sphere phantom was very accurate, thus

both the reconstructed gradient shapes were almost

identical.

Comparison of the measured gradients waveforms

with the gradient amplifier current monitor shows good

Fig. 3. Experimentally obtained reference and compressed echo signals

(displayed as modulus). The gradient amplitude was 80mT/m for both

excitation and readout gradient, i.e., b ¼ 1. The reference echo length

was T 0
p ¼ 0:8ms and the estimated constant part of the compressed

echo is T 0
c � 0:620ms. The calculated gradient rise time is Tg ¼ 0:19ms.
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agreement. This might indicate that for this particular

gradient system the more serious problem is the induc-

tance of the gradient coils themselves rather than eddy

currents. The X and Y gradients coils, which produce

the more corrupted gradient ramp, have inductance

177 lH. This is twice the value of the Z gradient coil

inductance (83 lH).
The performance of the method is mainly determined

by two factors: signal-to-noise ratio of the acquired

signal and the limited extent of the sample along the

measured gradient. Signal-to-noise ratio can be im-

proved by increased signal averaging at the expense of a

longer measurement time. The sample length is limited

by the size of the RF coil and/or the size of the imaging

volume. A limited sample length equates to a limited

signal frequency bandwidth, which is manifested as a
ringing artifact (Gibbs phenomenon) and/or edge

smoothing at both ends of the echo. This edge

smoothing is more noticeable when low gradient am-

plitudes and a small sample size are used. By using a

sample that is longer than the coil this effect is mini-

mized. This strategy has the additional advantage that

the coil spatial sensitivity acts as a smoothing window

and helps to partially suppress ringing artifacts. Due to

this effect low gradient values at the beginning or end of
a gradient pulse cannot be reconstructed from the ex-

perimental signal.

In order to estimate the impact of the edge effect on

the precision of the gradient reconstruction we did ref-

erence measurement for the stabilized gradient ampli-

tude (see Figs. 1a and b). The precision of the gradient

amplitude calculation and changes in echo area were

examined for particular gradient amplitudes. Two-ref-
erence datasets were acquired with the plastic tube

Fig. 4. Results of gradient shape reconstruction (solid lines) compared to measured gradient currents (dashed lines and plotted shifted up 10% for

clarity) for X, Y, and Z gradients (top, middle, bottom). Data from the tube phantom and sphere phantom are shown in the left and right columns,

respectively. The X and Y reconstructions exhibit ripples distortions, most likely caused by slightly off-center position of the sphere phantom in X and

Y-axes. The magnified part of the reconstructed gradient is shown for revealing fine details.
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positioned along the Z-axis and using 20 and 80mT/m

readout gradient amplitudes. The amplitude of mea-

sured gradient was set for 50, 75, 80, 90, and 100% (i.e.,

b ¼ 2, 1.33, 1.25, 1.11, and 1) of readout gradient for

each dataset. The gradient switch time was set at

Ts ¼ 100ms to minimize any eddy current effects on the

reference echo. All remaining parameters were identical

as in the previous experiments, i.e., TE ¼ 3:36ms, time
repetition TR ¼ 2 s and 32 averages. From each dataset

two parameters were calculated: total echo area and the

relative gradient amplitude relative to readout gradient.

To minimize random errors the gradient amplitude was

estimated from 100 points taken from the center of the

echo. The results are summarized in Table 1 and reveal

that: echo area differences between half- and full-am-

plitude of the excitation gradient were less than 3%; the
calculation of the gradient amplitude had less than 1%

error for all measurements. This indicates that error

during gradient shape reconstruction caused by the finite

sample length was about 1% of the full gradient pulse

magnitude.

A natural question, which arises here, is whether the

method is capable of detecting induced eddy currents

during the gradient switching. It should be noted that
induced time-varying magnetic fields have two main

components: a magnetic field gradient opposite to the

applied gradient and a B0 shift in the main magnetic

field. The proposed method in principal is sensitive only

to the first component and is not sensitive to B0 shifts of

the main magnetic field, which must be measured with

another technique, e.g. [5]. The estimated precision in-

dicates that it can be used for monitoring the eddy
current of the order of 1% at gradient peaks. However

the method is not suitable for measuring eddy current

effects at low gradient values.

A unique feature of the proposed method is that it

provides the shape of the measured gradient waveform.

Although, a similar feature has been reported previously

[7], our approach has the potential to be much more

precise and more convenient for use because the previ-

ous method measures the gradient waveform in discrete

selected points and for each point a separate measure-

ment is performed. With such a method small gradient

glitches (as shown in Fig. 4 for Z-gradient) might be

overlooked. Another problem, reported with the previ-

ous method, was that reconstruction of the gradient
waveform was affected by uncertainty of the measured

profile.

5. Conclusions

We have presented an NMR method for direct

measurement of the temporal evolution of magnetic
field gradients. The main advantage of this technique is

that it does not require any additional hardware. In

fact it is based on the same principles that are used for

MRI, and thus can be used for measurements in MRI

scanners of any size. We have proved that this tech-

nique can yield results that correspond very precisely to

the measurement of current flowing through gradient

coils. A main application area is the testing of gradient
system components (power amplifiers, filters, cables,

and coils).

Another application is the measurement of aspects

of eddy current behavior, in particular the eddy current

gradient fields when the gradient is on (e.g., at a

nominal plateau). The method is not suitable for

measurement of small residual gradients when the

gradient is nominally off, nor for measurement of shifts
of the main B0 magnetic field induced by gradient

switching. Practical experience has shown that the

method can be successfully used with high-field gradi-

ents as well as with spectrometers with substantially

lower gradients field, e.g., 20mT/m as has been re-

ported in [8,9].

Table 1

Calculation of the gradient amplitude from reference echo to estimate impact of the finite sample length on the precision of reconstructed gradient

shape

Gradient amplitude

in (%)a
Readout gradient amplitude

20mT/m 80mT/m

Relative echo

area in (%)b
Calculated gradient

amplitude in (%)c
Relative error of

the calculated

gradient in (%)d

Relative echo

area in (%)b
Calculated gradient

amplitude in (%)c
Relative error of

the calculated

gradient in (%)d

50 101.428 49.3 0.717 102.642 49.3 0.747

75 100.837 74.5 0.508 101.799 74.1 0.909

80 100.537 79.6 0.353 101.508 79.2 0.804

90 100.412 89.7 0.282 100.811 89.5 0.497

100 100 — — 100 — —

aGradient amplitude (in percent of readout gradient).
bRelative echo area (in percent of echo area for 100% gradient amplitude) calculated from modulus of the experimental signal.
c The amplitude has been calculated from 100 samples taken from the echo center to minimize random error.
dRelative error of the calculated gradient amplitude.
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